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• Upside already trained on single protein chain data 
set for protein folding

• →info relevant to protein-protein interactions 
underrepresented

• We want to minimize native pose’s 
potential energy w.r.t. params α 
and therefore maximize its 
(Boltzmann) probability:

Acknowledgements• Try different forms of training objective
• More extensive validation and testing: higher degree of cross-validation, longer 

simulations, start from unbound conformations
• Expand training set
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Abstract

Extending Upside, A near-atomic level model for fast protein 
folding, for predicting protein-protein interactions
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Upside Computational Loop

New Inter-protein Potential Term

We are extending Upside, a near-atomic level model previously developed in
our group for fast folding of proteins in implicit solvent via Langevin dynamics,
for predicting protein-protein interactions and binding affinities. Upside's speed
arises from only explicitly accounting for the backbone N, Cα, and C atoms
during the dynamics portion, while it infers the position of pendant groups
representing side chains and propagates their forces onto the backbone. The
reconstructed protein maintains detailed Rama maps, H-bonding, and side
chain potentials, setting Upside apart from typical GG models. This provides a
solid foundation to study protein-protein interactions. Here we utilize Upside
for this application by retraining the potential with a benchmark set of protein
complexes. We find mixed success.
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• 300 complexes from benchmark
• 100 decoys/complex
• Aim for 5-fold cross-validation

Retrain V(R) for protein docking 
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Current Scope CG Model
• Docking: predict the geometry of bound 

poses
• Want native pose (corresponding to crystal 

structure) to be highest ranked

Need dynamics

The Coarse 
Grained Model
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Evolution of <PE> During Training for 4 Complexes
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Summary Stats

• 𝑉SC = 𝑉SC 𝑟, 𝜃1, 𝜃2 + 𝑉SC_inter 𝑟

• Composed of cubic spline basis functions
• Advantages:

• >4x fewer parameters to train
• Modular

RMSDs: closest 
approach(largest 
cluster center)

CASP Targets: Global Distance Test

Rank 
Improvement

Rank 
Degradation

Top 5 Before Top 5 After Top 5 New 

Training (240) 5573 641 67 122 73

Validation (60) 1015 238 19 26 13

𝑽SC_inter 𝒓 after training
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Change in Native Rank After Training

Rank: order of <PE> of native pose vs. 100 
decoys. Rank 1 means it has the lowest <PE>
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